Search results for "Experimental stress analysis"
showing 3 items of 3 documents
Evaluation of crack-closure by second harmonic thermoelastic stress analysis
2022
The work illustrates a new experimental approach to evaluate crack-closure in samples undergoing Fatigue Crack-Growing. Crack-closure leaves a peculiar signature on both amplitude and phase of the harmonic of the temperature signal at twice the loading frequency (Second Harmonic), due to the periodic nature of the internal elastic compression stresses. Thermoelastic Stress Analysis (TSA) is successfully applied to reveal such signatures on Single-Edge-Notched steel samples. A methodology is also proposed to evaluate the Crack-Opening-Load from temperature data. The work finally explores the influence of crack-closure on crack-tip identification and on the evaluation of the Stress Intensity …
A New Procedure for the Evaluation of Non-Uniform Residual Stresses by the Hole Drilling Method Based on the Newton-Raphson Technique
2010
The hole drilling method is one of the most used semi-destructive techniques for the analysis of residual stresses in mechanical components. The non-uniform stresses are evaluated by solving an integral equation in which the strains relieved by drilling a hole are introduced. In this paper a new calculation procedure, based on the Newton-Raphson method for the determination of zeroes of functions, is presented. This technique allows the user to introduce complex and effective forms of stress functions for the solution of the problem. All the relationships needed for the evaluation of the stresses are obtained in explicit form, eliminating the need to use additional mathematical tools. The t…
On the history of torsional stress concentrations in shafts: From electrical analogies to numerical methods
2014
This article proposes a retrospective on experimental and numerical methods developed throughout the past century to solve the torsion problem in shafts, with particular emphasis on the determination of shear stress concentration factors in discontinuities of typical use in shaft design. This article, in particular, presents the theory and related solutions distinguishing between two classes of geometries: shafts with constant cross section and axisymmetric shafts with variable diameter. Emphasis is given to approaches based on physical analog methods and, in particular, those based on electrical analogies proposed since about 1925. Experimental methods based on structural physical models …